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SUMMARY

Both iron overload and iron deficiency have been
associated with cardiomyopathy and heart failure,
but cardiac iron utilization is incompletely under-
stood. We hypothesized that the transferrin recep-
tor (Tfr1) might play a role in cardiac iron uptake
and used gene targeting to examine the role of Tfr1
in vivo. Surprisingly, we found that decreased iron,
due to inactivation of Tfr1, was associated with
severe cardiac consequences. Mice lacking Tfr1 in
the heart died in the second week of life and had
cardiomegaly, poor cardiac function, failure of mito-
chondrial respiration, and ineffective mitophagy. The
phenotype could only be rescued by aggressive iron
therapy, but it was ameliorated by administration of
nicotinamide riboside, an NAD precursor. Our find-
ings underscore the importance of both Tfr1 and
iron in the heart, and may inform therapy for patients
with heart failure.
INTRODUCTION

Heart failure is a clinical disorder characterized by congestion

and decreased functional capacity that, despite current therapy,

continues to have a high mortality. While increased iron can

cause heart failure in iron overload disorders (Gulati et al.,

2014), iron insufficiency is a more common problem. Up to

50% of patients with heart failure are iron deficient, and iron defi-

ciency is associated with poor outcomes (Erbel et al., 2003).

Severe iron deficiency causes cardiomyopathy in animals (Me-

deiros and Beard, 1998; Petering et al., 1990), but previous

studies have neither dissociated cardiac iron deficiency from

systemic iron deficiency with anemia nor investigated its cellular

consequences.

Iron is essential for oxygen transport, oxidative phosphoryla-

tion, DNA synthesis, and other cellular processes. Iron co-fac-

tors—iron-sulfur (Fe-S) clusters and heme—are synthesized by

mitochondria and necessary for mitochondrial function. Mito-

chondria are abundant in cardiomyocytes to supply energy for
C

repeated muscle contraction. Mitochondrial failure can lead to

increased reactive oxygen species and insufficient ATP. Accord-

ingly, clearance of dysfunctional mitochondria through mitoph-

agy is important for cardiomyocyte maintenance and function

(Jimenez et al., 2014).

Transferrin receptor (Tfr1, gene symbol Tfrc) promotes iron up-

take through the transferrin (Tf) cycle, by facilitating receptor-

mediated endocytosis of iron bound to serum Tf (Hentze et al.,

2004). Through targeted gene disruption in mice, we showed

that erythroid precursors require Tfr1, but other cells can

develop without it (Levy et al., 1999). Tfr1�/� mice appeared

normal early in embryogenesis, but died by embryonic day

12.5 with anemia, pericardial effusion, edema, and a kinked

neural tube. We attributed the pericardial effusion and edema

to severe anemia but could not exclude cardiac dysfunction.

There were no anatomical defects in the embryonic heart, indi-

cating that heart structures did not require Tfr1 to form. However,

we now propose that Tfr1 is critically important for normal heart

function.

Mice with profound deficiency of Tf are viable but have severe

anemia (Trenor et al., 2000). They accumulate excess iron in

non-hematopoietic tissues, including the heart, confirming that

many cells can take up non-Tf-bound iron. Chimeric mice gener-

ated from blastocysts containing Tfr1�/� embryonic stem cells

showed that non-hematopoietic tissues, including the heart,

could develop from cells lacking Tfr1 (Ned et al., 2003).

To determine whether Tfr1 is important in the heart, we dis-

rupted floxed Tfr1 in cardiomyocytes using Cre recombinase

expressed from a heart-specific promoter. Tfr1-null mice devel-

oped early, lethal cardiomyopathy with failure of oxidative

phosphorylation and ineffective mitophagy. The abnormalities

were prevented by iron supplementation to overwhelm the

capacity of serum Tf to bind iron. The lifespan of Tfr1-null

mice was prolonged by treatment with nicotinamide riboside

(NR), a substrate for NAD production. Our results demonstrate

a stringent requirement of cardiomyocytes for Tfr1-mediated

iron uptake, and they show defects in oxidative phosphoryla-

tion and mitophagy caused by iron deficiency. Our findings

give insight into how isolated cardiac iron deficiency leads

to cardiac dysfunction, and they suggest possible therapeutic

approaches for patients with heart failure complicated by iron

deficiency.
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RESULTS

Tfr1 Deficiency Causes Cardiomyopathy
We inactivated murine Tfr1 in cardiomyocytes by expressing a

Myh6-Cre transgene (Agah et al., 1997) to recombine loxP sites

flanking exons 3–6 (Figure S1A). We confirmed that mutant

(Tfr1hrt/hrt) animals expressed little Tfr1 mRNA in heart (Fig-

ure S1B) and that Tfr1 was not deleted in other tissues (data

not shown). Tfr1hrt/hrt mice were born in Mendelian ratios and

maintained body weights similar to wild-type (WT) littermates

(Tfr1fl/fl and Tfr1fl/+ mice, Figures 1A and S1C), but they died after

several hours of distress by post-natal day 11 (P11) with cardiac

hypertrophy (Figure 1B) and elevated heart-to-body weight ra-

tios, which had developed over time (Figure 1C).

Echocardiography of Tfr1hrt/hrt mice was normal at P5 but

showed left ventricular dilatation and decreased fractional short-

ening at P10 (Figures 1D–1F), indicating compromised cardiac

performance. Wheat germ agglutinin staining showed normal

Tfr1hrt/hrt cardiomyocyte size at P5 but enlarged cardiomyocytes

at P10, consistent with hypertrophy (Figure 1G). At P5 mRNA

encoding one biomarker for cardiac hypertrophy, Nppb, was

increased, but Acta1, another biomarker, was decreased (Fig-

ure 1H). However, at P10 all cardiac hypertrophy biomarkers

examined (Nppa, Nppb, Myh7, and Acta1) were significantly

increased. Thus, deletion of Tfr1 in cardiomyocytes leads to

dilated cardiomyopathy over the first 10 days of life.

Cardiac Iron Deficiency
The canonical function of Tfr1 is to supply iron to meet cellular

needs. We measured non-heme cardiac iron to determine

whether loss of Tfr1 resulted in iron deficiency. While tissue

iron concentration increased over time in WT animals, it was

decreased at birth and did not change substantially in Tfr1hrt/hrt

hearts (Figures 2A–2C). The total iron concentration at P10

also was decreased in Tfr1hrt/hrt mice (Figure 2D). Fe-S clusters

are synthesized from non-heme iron, and the amounts of en-

zymes Dpyd and Ppat decrease when Fe-S clusters are not

available (Stehling et al., 2013). Both proteins were deficient in

Tfr1hrt/hrt hearts at P7–P10 (Figures 2E and S1D), consistent

with compromised Fe-S cluster biogenesis due to iron deficiency

or mitochondrial dysfunction. We conclude that Tfr1 is important

for iron uptake by cardiomyocytes.

Metabolic Changes Associated with Cardiomyopathy
Mitochondria from Tfr1hrt/hrt hearts were slightly abnormal at P5,

but severely disrupted and enlarged at P10 (Figure 3A). Fe-S

clusters and heme are required by most complexes of the elec-

tron transport chain (ETC) (Xu et al., 2013).We immunoblotted for

proteins that are labile when ETC complexes are not assembled

properly. At P5 complex II was decreased in Tfr1hrt/hrt hearts and

complex IV was increased, but the other ETC complexes did not

differ from controls (Figure 3B). At P10 complexes I–IV were all

diminished in Tfr1hrt/hrt hearts (Figure 3C). Activity of complex II

was decreased at P5 (Figure 3D), and activities of complexes

I–IV were all markedly decreased at P10 in Tfr1hrt/hrt hearts (Fig-

ure 3E) at P10. However, complex V, which does not contain iron,

appeared unchanged at both ages, and its activity was not

decreased in Tfr1hrt/hrt hearts at P10 (Figure S2A). Expression
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of mitochondria-encoded mRNA for Polrmt, Nd4, Cytb, and

Cox3 was similar to WT at P5 (data not shown), but by P10

all were decreased in Tfr1hrt/hrt hearts (Figure 3F), suggesting

fewer mitochondria or mitochondria incapable of normal gene

expression.

We profiled mRNA expression in Tfr1hrt/hrt hearts at P10

(results deposited at GEO: GSE68745) and looked for patterns

using gene set enrichment analysis (Mootha et al., 2003; Subra-

manian et al., 2005). Genes downregulated in the mutants were

significantly associated with PPAR (particularly PPARa) and

PGC1-a signaling, myogenesis, insulin signaling, and cardiomy-

opathy. Upregulated genes included hypoxia-inducible targets,

Myc targets, and glycolytic enzymes.

We confirmed decreased expression of PGC1-a (Ppargc1a)

and PGC1-b (Ppargc1b) mRNA in Tfr1hrt/hrt hearts (Figure 3G)

as well as PGC1-a protein (Figure S2B). PGC1-a controls tran-

scription of a suite of nuclear genes to induce mitochondrial

biogenesis (Lehman et al., 2000;Wu et al., 1999b). Mice deficient

in PGC1-a in the heart develop cardiomyopathy, similar to our

mutant mice (Arany et al., 2005). Our results suggest impaired

ability to induce mitochondrial biosynthesis.

Cardiomyopathy is associated with a switch to fetal-like meta-

bolism, with glucose, rather than fatty acids, as the preferred

energy source (van Bilsen et al., 1998). The switch has been

attributed to decreased activity of PPARa (Ppara) (Barger

et al., 2000), which forms a heterodimer with Rxr. Expression

of Ppara andRxrgwas decreased in Tfr1-null hearts, as was fatty

acid transport protein (Fatp1/Slc27a1, Figure 3H). These

changes were not apparent earlier at P5. Interestingly, Ppara

expression is induced by the histone demethylase Kdm3a

(Okada et al., 2010), which requires iron (Yamane et al., 2006).

Ppara and other genes induced by Kdm3a, Ucp2 and Acadm,

had decreased mRNA levels at P10, but were not decreased at

P5 (data not shown). We hypothesize that iron deficiency caused

decreased Ppara expression, contributing to the metabolic

switch.

At P10 we observed increased mRNA expression of hypoxia-

inducible genes (Figure 4A) and glycolytic enzymes (Figure 4B).

Of the glycolytic enzymes, only Pfkl was slightly increased at

P5 (data not shown). Iron is a cofactor for hydroxylases that

cause HIFa transcriptional factors to be inactivated, suggesting

that iron deficiency could explain induction of hypoxia-inducible

genes (Kaelin and Ratcliffe, 2008). In addition, Myc, which in-

duces expression of glycolytic enzymes, was upregulated (Fig-

ures 4C and S3). However, glycolysis cannot meet energy needs

of cardiomyocytes, which depend on mitochondrial respiration.

Apoptosis was increased in Tfr1hrt/hrt hearts, consistent with

severe mitochondrial dysfunction, but only at P10 and not earlier

at P5 (Figure 4D). These results suggest that iron deficiency

leads to mitochondrial insufficiency, metabolic changes, and

increased apoptosis, contributing to cardiomyocyte hypertrophy

and cardiac dysfunction.

Interruption of Mitophagy
Mitochondrial damage should activate mitophagy to clear

dysfunctional organelles and recover iron for re-use. Glycolytic

enzyme Hk2 promotes autophagy during energy deprivation

(Roberts et al., 2014) and was not upregulated at P5 (data not



Figure 1. Loss of Tfr1 in Cardiomyocytes Causes Cardiomyopathy

(A) Tfr1hrt/hrt mice appeared grossly similar to WT at P10.

(B) H&E staining of heart sections at P10 demonstrates cardiomegaly in Tfr1hrt/hrt mice. Scale bars, 1 mm.

(C) Tfr1hrt/hrt mice had normal heart-to-body weight ratios at P5, but cardiomegaly was apparent at P8 and P10.

(D) Echocardiograms from representative Tfr1hrt/hrt and WT littermates at P5 (top) and P10 (bottom). For each age, the short axis (top) and long axis (bottom) are

shown. Tfr1hrt/hrt mice have markedly impaired cardiac function at P10.

(E and F) Left ventricular diameter and fractional shortening were normal at P5, but abnormal in Tfr1hrt/hrt mice at P10. LVDd, left ventricular diameter in diastole;

LVDs, left ventricular diameter in systole.

(G) Representative images of WGA staining for cardiomyocyte morphometrics and quantitation show Tfr1hrt/hrt cardiomyocyte area similar to WT at P5 (top) and

enlarged Tfr1hrt/hrt cardiomyocytes at P10 (bottom). Scale bars, 15 mm.

(H) The mRNA levels of cardiac hypertrophy biomarkers at P5 and P10, as described in the text, are shown.

Data are presented as means ± SEM. Sample size (n) is indicated. *p < 0.05, **p < 0.01, and ***p < 0.001 by one-way ANOVA. See also Figure S1.
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Figure 2. Iron Deficiency and Fe-S Cluster

Insufficiency in Tfr1hrt/hrt Mice

(A–C) Non-heme iron levels in WT and mutant

heart at P0 (A), P5 (B), and P10 (C) are shown.

(D) Total iron concentration at P10 is shown.

(E) Decreased Fe-S cluster proteins Dpyd and

Ppat in hearts from Tfr1hrt/hrt mice; Rpl19 is the

control. Ages and genotypes are shown (top).

Data are presented as means ± SEM. Sample size

(n) is indicated. ***p < 0.001 by one-way ANOVA.
shown), but was substantially induced at P10 (Figures 4B, 5A,

and S4A). Both isoforms of Rcan1, which also induces mitoph-

agy (Ermak et al., 2012) and protects against apoptosis due to

hypoxia (Yan et al., 2014), were upregulated in P10 Tfr1hrt/hrt

hearts (Figures 5B, S4B, and S4C).

We characterized mitophagy by using tissue because

neonatal mouse cardiomyocytes cannot be cultured efficiently

without contaminating cells. Expression of putative mitophagy

receptors, Nix (Bnip3l) and Fundc1 (Liu et al., 2012; Novak

et al., 2010), was decreased in Tfr1hrt/hrt hearts at P8 and P10

(Figures 5C, 5D, S4D, and S4E). Ulk1, which phosphorylates

Fundc1 to clear damaged mitochondria (Wu et al., 2014), also

was decreased (Figures 5C, 5D, S4D, and S4F). Bnip3, a homo-

log of Nix, was markedly increased in mutant hearts as early as

P5 (Figures 5E and S4G; data not shown). Bnip3 triggers opening

of the mitochondrial permeability transition pore and loss of

mitochondrial membrane potential (Regula et al., 2002), but

may not function as a mitophagy receptor. Bnip3 is induced by

hypoxia-inducible factors (Bruick, 2000), consistent with upre-

gulation of other hypoxia-inducible genes. Overall, our results

suggest that molecules important for cargo recognition were

deficient.

Map1lc3 (LC3) and Gabarap also are involved in the cargo

recognition step of autophagy. LC3-II, a phosphatidylethanol-

amine (PE)-conjugated form of LC3, increases during active

autophagy, but was decreased in heart samples from Tfr1hrt/hrt

mice at P5 and decreased more at P8 and P10 (Figures 5F–5H,

S4H–S4J, and S4L). Gabarap-II also was decreased at P10 (Fig-

ures 5H and S4K).

We evaluated other proteins involved in early steps of auto-

phagy. Cisd2 (Naf-1), an Fe-S cluster protein associated with

the mitochondrial membrane, is depleted in Tfr1hrt/hrt mice

(Figures 5I and S4M). Deficiency of Cisd2 should promote auto-

phagy by liberating Beclin-1 from Bcl2 (Chang et al., 2010). Be-

clin-1 levels were similar in mutant andWT hearts (Figures 5I and

S4N) but we could not assess its activity. Atg16L, involved early

in formation of the phagophore, was increased in P10 Tfr1hrt/hrt

hearts (Figures 5J and S4J). Atg10, which was decreased (Fig-
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ures 5J and S4O), is an E2-like enzyme

involved in both Atg12-Atg5 conjugation

and LC3 conjugation to PE (Nemoto

et al., 2003). While LC3-II was decreased

(Figures 5F–5H, S4HS4J, and S4L),

Atg12-Atg5 was increased in mutant

hearts (Figures 5J and S4J). The Atg12-

Atg5 complex forms before conjugation
of LC3 (Geng et al., 2008). Knockdown of LC3 or Gabarap leads

to maintenance of the Atg12-Atg5 complex (Weidberg et al.,

2010), consistent with our observations. Atg4b cleaves the

carboxyl termini of LC3 and Gabarap to expose their lipidation

sites, but it also de-lipidates both proteins. Overexpression of

Atg4b thus inhibits membrane localization and PE conjugation

of LC3 (Tanida et al., 2004). Atg4b was increased in Tfr1hrt/hrt

hearts (Figures 5J and S4O), possibly contributing to decreased

levels of LC3-II andGabarap-II. Atg7, an E1-like enzyme involved

in the development of autophagosomes, and Atg3, an E2-like

enzyme for the LC3/Gabarap conjugation system, were both

increased in Tfr1hrt/hrt mice (Figures 5J and S4J). These results

suggest that mutant heart cells were attempting to initiate mi-

tophagy, but key proteins involved in cargo recognition were

deficient.

Sqstm1 (p62) links the phagophore to cargo. During autopha-

gic flux, lysosomal enzymes degrade p62. The amount of p62

was similar to WT at P5 (Figure S4H), but it was increased in

Tfr1hrt/hrt hearts at P8 and P10 (Figures 5G, 5J, S4I, and S4J)

even though p62 mRNA was not increased (Figure S4P), sug-

gesting that p62 was not degraded. We examined cathepsin D

(Ctsd), an indicator for lysosomal function. Both forms of Ctsd

were increased in hearts from Tfr1hrt/hrt mice (Figures 5K and

S4Q), showing that lysosomes were functioning. Consistent

with a possible defect in cargo recognition, these results suggest

that a mitophagy step prior to autophagosome-lysosome fusion

was impaired.

Lipin1 (Lpin1) enhances transcription regulated by PPAR-a

and PGC-1a (Finck et al., 2006) and controls autophagic clear-

ance in skeletal muscle (Zhang et al., 2014). Lpin1 mRNA was

decreased in hearts from Tfr1hrt/hrt mice (Figure 5L), possibly

contributing both to the metabolic switch and the interruption

of mitophagy. Ndrg1 is induced by iron depletion (Le and Ri-

chardson, 2004) and upregulated in Tfr1hrt/hrt hearts (Figure 4A).

Overexpression of Ndrg1 suppresses LC3-II accumulation and

autophagosome formation (Kachhap et al., 2007; Sahni et al.,

2014). Atg9 delivers membrane components to developing auto-

phagosomes (Puri et al., 2014). Atg9 was increased in Tfr1hrt/hrt



Figure 3. Abnormal Mitochondrial

Morphology and Function in Hearts from

Tfr1hrt/hrt Mice

(A) Electron micrographs comparing mitochondria

in WT and Tfr1hrt/hrt hearts. Tfr1hrt/hrt mitochondria

were slightly abnormal at P5 (top), but markedly

enlarged and disrupted at P10 (bottom). Scale

bars, 500 nm.

(B) Representative protein levels for ETC com-

plexes by immunoblot at P5, using complex V as

the standard, are shown.

(C) Representative protein levels for ETC com-

plexes by immunoblot at P10, using complex V as

the standard, are shown.

(D) Enzymatic activity of complex II of ETC from P5

Tfr1hrt/hrt and WT littermates is shown.

(E) Enzymatic activity of complexes I–IV of ETC

from P10 Tfr1hrt/hrt and WT littermates is shown.

(F) Relative mRNA levels of Polrmt and mito-

chondria-encoded genes at P10 are shown.

(G) Relative mRNA levels of PGC1-a (Ppargc1a)

and PGC1-b (Ppargc1b) at P10 are shown.

(H) Relative mRNA levels of PPARa (Ppara), Rxr

gamma (Rxrg), and fatty acid transport protein

(Fatp1) at P10 are shown.

Data are presented as means ± SEM. Sample size

(n) is indicated. *p < 0.05, **p < 0.01, ***p < 0.001

by one-way ANOVA. See also Figure S2.
hearts (Figures 5J and S4O). Optn, also important in autopha-

gosome maturation (Tumbarello et al., 2012), was induced in

Tfr1hrt/hrt hearts (Figure 5M). These results reinforce the idea

that autophagy/mitophagy was generally stimulated, but cargo

recognition was defective in Tfr1hrt/hrt hearts.

Rescue of Tfr1hrt/hrt Mice
To test whether cardiac iron repletion could rescue Tfr1hrt/hrt

mice, we administered iron dextran at P3 to supersaturate Tf

and induce non-Tf-bound iron uptake. This prolonged survival,

but Tfr1hrt/hrt mice still died at 4 to 5weeks with severe cardiome-

galy.We confirmed that the hearts had assimilated iron by immu-
Cell Reports 13, 533–545,
noblotting for Fe-S cluster proteins. In

contrast to untreated Tfr1hrt/hrt mice,

Dpyd and Ppat levels were similar at

P10 in Tfr1hrt/hrt and WT mice treated

with iron dextran (Figure S5A). Proteins

representing ETC complexes were also

similar at P10 (Figure S5B). At that time

Tfr1hrt/hrt mice and WT littermates had

similar heart-to-body weight ratios (Fig-

ure S5C). To try to improve the rescue,

we administered a second dose of iron

dextran at P7. The onset of cardiomyop-

athy was further delayed and Tfr1hrt/hrt

mice survived up to 13 weeks. However,

ETC complexes already were decreased

in hearts from doubly treated Tfr1hrt/hrt

mice at 6–8 weeks of age (Figure S5D)

and the hearts already were enlarged

(Figure S5E). Together, these results indi-
cate that iron-treated Tfr1hrt/hrt mice assimilated and used sup-

plemental iron to survive beyond their usual lifespan, but they

eventually showed abnormalities in mitochondrial ETC com-

plexes and autophagy-related proteins (data not shown) similar

to untreated Tfr1hrt/hrt mice at P10.

We hypothesized that the heart might require continuous

iron uptake and that iron administered early might no longer

be available for utilization. To sustain elevated plasma iron

concentrations, we took advantage of hemojuvelin knockout

(Hjv�/�) mice, which persistently have increased non-Tf-bound

iron (Huang et al., 2005). We generated Tfr1hrt/hrt;Hjv�/� mice

in which Tfr1 was deleted in the heart and Hjv was deleted
October 20, 2015 ª2015 The Authors 537



Figure 4. Metabolic Changes and Increased

Apoptosis in Hearts from Tfr1hrt/hrt Mice at

P10

(A) Relative mRNA levels of transcripts induced by

hypoxia are shown.

(B) Relative mRNA levels of transcripts encoding

enzymes of glycolysis are shown.

(C) Representative protein levels for Myc by

immunoblot at P10 are shown.

(D) TUNEL staining for apoptosis at both P10 and

P5. Top row is without DAPI staining of nuclei;

bottom row is with DAPI staining. Vertical pairs

from left to right are as follows: negative control,

positive control, and WT and Tfr1hrt/hrt at P10 and

P5, respectively. Bright green fluorescent nuclei

represent apoptotic cells. Scale bars, 100 mm.

Results are quantified (right); data are presented

as means ± SEM.

Sample size (n) is indicated;*p < 0.05, **p < 0.01,

***p < 0.001 by one-way ANOVA. See also Fig-

ure S3.
globally. These mice also died at P11, similar to Tfr1hrt/hrt mice.

However, it takes time for Hjv�/� mice to accumulate iron.

We therefore treated Tfr1hrt/hrt;Hjv�/� and control mice with iron

dextran atP3 to support theanimals until theHjvmutation caused

elevated iron levels. With this strategy, the Tfr1hrt/hrt;Hjv�/�

mice were healthy when sacrificed at 12 months and had heart-

to-body weight ratios (Figure S5F) similar to Tfr1fl/fl;Hjv�/�

controls.

We confirmed that this protocol restored cardiomyocyte iron

by immunoblotting for Dypd and ferritin at 10–11 weeks (Fig-

ure 6A). Markers for ETC complexes I to IV were indistinguish-

able between Tfr1hrt/hrt;Hjv�/� mice and controls (Figure 6B).

Autophagy-related proteins LC3-II, p62, Fundc1, Nix, Ulk-1,

and Cisd2 showed no significant differences (Figures 6C–

6H). Collectively, these results indicate that the Tfr1hrt/hrt

mutant phenotype is primarily attributable to a defect in iron

assimilation, and iron deficiency results in cardiac hypertro-

phy, mitochondrial dysfunction, and interruption of mitophagy.

Further experiments will be needed to fully characterize the

defect in mitophagy. Importantly, it appears that the heart
538 Cell Reports 13, 533–545, October 20, 2015 ª2015 The Authors
is highly sensitive to iron deprivation

due to inactivation of Tfr1 and requires

a continuous source of iron to function

normally.

Treatment with NR
Mitochondrial dysfunction can cause a

decreased NAD/NADH ratio and inactiva-

tion of sirtuin deacetylases (Nunnari and

Suomalainen, 2012). A decreased NAD/

NADH ratio might block signals for mito-

chondrial biogenesis while also causing

defective mitophagy (Fang et al., 2014).

Furthermore, in the absence of Sirt1,

LC3-II is decreased and p62 accumu-

lates (Hu et al., 2003), similar to what we

observed in Tfr1hrt/hrt mice. We specu-
lated that augmentation of NAD levels might modify the mutant

phenotype.

We noted dramatic induction of mRNA encoding NR kinase 2

(Nmrk2/Itgb1bp3, Figure 7A) and the Slc3a2/Slc7a5 transport

system for theNADprecursor tryptophan (Boadoet al., 1999; Fig-

ure 7B), along with decreased expression of ADP-ribosyltrans-

ferases (Figure 7C), suggesting that mutant cardiomyocytes

were trying to increase cellular NAD levels. Mitochondria from

Tfr1hrt/hrt hearts showed increased lysine acetylation (Figure 7D),

consistentwith increasedacetylation or decreasedmitochondrial

sirtuin deacetylase activity due to decreasedmitochondrial NAD.

NR can be phosphorylated by Nmrk proteins to induce NAD

production, activating sirtuins and mitochondrial biogenesis

(Chi and Sauve, 2013). Considering that Nmrk2 (Itgb1bp3) was

induced in Tfr1hrt/hrt hearts (Figure 7A), we hypothesized that

NR might benefit the mutant animals. We administered NR and

observed up to 50% prolongation of lifespans of Tfr1hrt/hrt mice

(Figure 7E), indicating that NR could ameliorate the phenotype.

NRmight improve theNAD/NADH ratio by increasing NAD.We

attempted to measure NAD/NADH ratios without and with NR



Figure 5. Altered Expression of Molecules

Involved in Autophagy and Mitophagy in

Hearts from Tfr1hrt/hrt Mice

(A–J) Multiple autophagy- and mitophagy-related

genes were examined in P10 (A, B, D, E, and H–J),

P8 (C and G), and P5 (F) heart samples for protein

levels, as indicated. Differences suggested stim-

ulation of autophagy but failure to complete

autophagy in Tfr1hrt/hrt hearts. Sample sizes for

WT and Tfr1hrt/hrt not shown are as follows: (H) 14

WT and six Tfr1hrt/hrt mice; (I) three WT and five

Tfr1hrt/hrt mice for Cisd2; five mice each for Be-

clin1; and (J) five to six mice of each genotype

except for Atg4B (11 mice) and Atg3 (16 mice).

(K) Lysosomal cathepsin D (Ctsd) and its cleaved

intermediate were elevated in hearts from Tfr1hrt/hrt

mice, indicating normal lysosomal function.

(L) Lpin1 mRNA was decreased in hearts from

Tfr1hrt/hrt mice.

(M) Optineurin (Optn) mRNA was increased in

hearts from Tfr1hrt/hrt mice.

Data are presented as means ± SEM. Sample size

(n) is indicated; *p < 0.05, **p < 0.01, ***p < 0.001

by one-way ANOVA; n.s., not significant. See also

Figure S4.
treatment, but our results from tissue were unreliable. Alterna-

tively, NR may enhance the mitochondrial unfolded protein

response (UPRMT; Khan et al., 2014). Although not apparent at

P5 (data not shown), we observed increased mRNA for multiple

genes associated with the UPRMT in P10 hearts, including Atf4,

Lonp1, Ddit3, and Fgf21 (Figure 7F). In contrast to the earlier

report (Khan et al., 2014), NR treatment was associated with
Cell Reports 13, 533–545,
decreased expression of UPRMT mRNAs

(Figure 7F). Furthermore, NR alleviated

the accumulation of p62 in the Tfr1hrt/hrt

hearts (Figure 7G). It appears that NR im-

proves mitochondrial quality or enhances

mitophagy in Tfr1hrt/hrt hearts, but under-

standing its beneficial effect will require

more work.

DISCUSSION

Iron overload has long been known to

cause cardiomyopathy, but relatively little

was previously understood about the

molecular consequences of cardiac iron

deficiency. Iron deficiency has been impli-

cated in the pathogenesis of heart failure,

even in the absence of frank anemia, but

previous animal models of cardiomyopa-

thy have involved systemic iron deficiency

(Medeiros andBeard, 1998;Peteringet al.,

1990), which also causes anemia, con-

founding the interpretation of the role of

iron in the heart. In the course of eluci-

dating how cardiomyocytes assimilate

iron, we developed a mouse mutant that
allowed us to examine the consequences of isolated cardiac

iron deficiency. We observed that mice lacking Tfr1 in the heart

died from early onset cardiac hypertrophy, caused by iron defi-

ciency and associated with mitochondrial failure. There was

induction of a protective mitophagy response, as expected, but

failure to complete mitophagy due to inhibition of cargo recogni-

tion or another step early in the mitophagy pathway.
October 20, 2015 ª2015 The Authors 539



Figure 6. Rescue of Tfr1hrt/hrt Mice with

Continuous Iron

Iron overload achieved by Fe dextran adminis-

tration to mutant animals and WT littermates at P3

and an Hjv�/� hemochromatosis background

provided sufficient iron to fully rescue Tfr1hrt/hrt

mice.

(A) Dpyd and H-ferritin levels at 10 weeks are

shown.

(B) Proteins representative of ETC complexes at

10 weeks are shown.

(C–H) Markers of autophagy are shown as indi-

cated at 10 weeks of age.

Data are presented as means ± SEM. Sample size

(n) is indicated; n.s., not significant by one-way

ANOVA. See also Figure S5.
The iron deficit in Tfr1hrt/hrt hearts led to abnormal mitochon-

drial morphology and ETC function, similar to frataxin-deficient

mice with impaired Fe-S cluster biogenesis (Puccio et al.,

2001). Gene expression results suggested impaired mitochon-

drial biogenesis. A link between iron and mitochondrial biogen-

esis was reported previously by Rensvold et al. (2013), who

screened for genes induced by overexpression of PGC-1a in

muscle cells. They observed induction of Tfr1mRNA, suggesting

that iron uptake is stimulated when mitochondria are needed.

They showed that iron deprivation causes a reversible decrease

in expression of nuclear genes encoding ETC proteins, which are

regulated by PGC-1a. We similarly observed decreased mRNA

levels of Ndufab1, Ndufb2, Ndufb4, Ndufs4, Sdh, Cox7b2,

Cox15, Atp5e, and Atp5g (data not shown) along with genes

encoding PGC-1a and PGC-1b and PGC-1a protein. Our obser-

vations support the conclusion that regulation of mitochondrial

biogenesis is functionally linked to Tfr1 and cellular iron homeo-

stasis. Tfr1 also has been linked to mitochondrial biogenesis in

osteoclasts, where iron uptake stimulated expression of PGC-

1b, while iron chelation blunted it (Ishii et al., 2009).

Tfr1hrt/hrt cardiomyocytes increased expression of all enzymes

of glycolysis as well as other hypoxia-inducible genes. These

changes may be attributable, in part, to stabilization of HIFa

proteins when the iron supply is insufficient for function of hy-
540 Cell Reports 13, 533–545, October 20, 2015 ª2015 The Authors
droxylases that normally modify HIFa

proteins to cause their degradation and

inactivation. Additionally, many upregu-

lated genes are targets of Myc, which

was increased in Tfr1hrt/hrt hearts. Myc

regulates genes to promote iron uptake

(Wu et al., 1999a), and Tfr1 itself is a

Myc transcriptional target (O’Donnell

et al., 2006). Increased expression of

Myc is an appropriate response to cellular

iron deficiency, but futile in the absence

of Tfr1.

Myc also contributes to mitochondrial

biogenesis (Karamanlidis et al., 2013).

More than one-third of nucleus-encoded

mitochondrial genes are Myc targets,

and mitochondrial mass generally corre-
lates with Myc expression. Myc is induced in cardiomyocytes

in response to stress, and it assists in the metabolic shift from

fatty acid oxidation to glucose oxidation, as observed in our

mice, by inducing glycolytic enzymes and downregulating fatty

acid oxidation enzymes by inhibiting PGC-1a expression.

While induction of glycolytic enzymesmakes sense in Tfr1hrt/hrt

cardiomyocytes with failing mitochondria, increased expression

of Myc and decreased expression of PGC-1a might provide

contradictory signals for mitochondrial biogenesis. Gomes

et al. (2013) recently reported that PGC-1a and Myc function in

distinct pathways, responding to different cues. Decreased

expression of mitochondria-encoded proteins can result from

decreased deacetylase activity, as might occur as a result of

an NAD deficit. Decreased deacetylase activity leads to stabili-

zation of Hifa proteins, and Hif-1a inhibits Myc-induced mito-

chondrial gene expression. In parallel, it leads to decreased

PGC-1a activity.

Mitophagy also is impaired in Tfr1hrt/hrt cardiomyocytes. Many

proteins involved in stimulating mitophagy are induced, but

levels of cargo recognition-related proteins Bnip3l (Nix), Fundc1,

Ulk1, LC3-II, Gabarap-II, and Atg10 are depressed and p62 ac-

cumulates in spite of normal lysosomal function. These changes,

alongwith decreased expression of Lpin1 and increased expres-

sion of Atg4b and Ndrg1, might explain the defect in mitophagy



Figure 7. Transient Rescue of Tfr1hrt/hrt Mice by Treatment with NR

(A) The mRNA encoding Nmrk2/Itgb1bp3 was massively increased in Tfr1hrt/hrt mice.

(B) The mRNAs encoding Slc3a2 and Slc7a5, components of the uptake system for tryptophan, an NAD precursor, were increased in Tfr1hrt/hrt mice.

(C) The mRNAs encoding ADP-ribosyltransferases Art1, Art4, and Art5 were markedly decreased in Tfr1hrt/hrt mice.

(D) Proteins from mitochondria isolated from Tfr1hrt/hrt heart showed increased lysine acetylation.

(E) Administration of NR, an NAD precursor and Nmrk2 substrate, extended the lifespan of Tfr1hrt/hrt mice for up to 5 days.

(F) Levels of UPRMTmRNAs in hearts fromWT and Tfr1hrt/hrt mice that were untreated (control group, left) or treated with NR (right). NR treatment appears to have

blunted the UPRMT response.

(G) The p62 protein levels in hearts from WT and Tfr1hrt/hrt mice that were untreated or treated with NR are shown.

Data are presented as means ± SEM. The p values for (A)–(C) and (F) were determined by one-way ANOVA. Sample size (n) is indicated; p value for (E) was

determined by log-rank test as described in the Supplemental Experimental Procedures; p value for (G) was determined by two-way ANOVA followed by

Bonferroni correction; *p < 0.05, **p < 0.01, ***p < 0.001.
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progression. However, it is also possible that mitophagy is inter-

rupted due to decreased availability of NAD to activate Sirt1, and

consequent increased acetylation of autophagy-related proteins

as previously reported (Hu et al., 2003). Similar to our results,

Sirt1�/� mice exhibited abnormal cardiac mitochondria and

increased accumulation of p62.

Normally, autophagy and mitophagy replete cellular nutri-

ents, particularly at times of stress. The failure of mitophagy in

Tfr1hrt/hrt mice suggests that damaged mitochondria, which are

rich in iron, cannot be effectively broken down to recover iron

for re-use. This would set up a vicious cycle, in which iron defi-

ciency compromises mitochondrial integrity, but new iron is

not available for new mitochondrial biogenesis. We speculate

that this explains why the phenotype of Tfr1hrt/hrt mice is so se-

vere. Iron is present in the mutant cardiomyocytes, but may

not be effectively used, exacerbating cellular distress.

We showed that the phenotype of our Tfr1hrt/hrt mice could be

corrected through aggressive and ongoing iron supplementa-

tion, confirming that iron deficiency is the root cause for the

abnormalities. Nonetheless, treatment with NR prolonged the

lifespan of our mice. The response to NR is reminiscent of other

studies where it increases NAD, sirtuin activity andmitochondrial

biogenesis (Cantó et al., 2012; Cerutti et al., 2014). NR was pre-

viously reported to stimulate the UPRMT (Khan et al., 2014), but

we observed the opposite. An increased NAD/NADH ratio and

activation of Sirt1 also lead to induction of autophagy (Hu

et al., 2003; Huang et al., 2003). We found that NR treatment

alleviated the accumulation of p62, suggesting improvement

of autophagy/mitophagy in Tfr1hrt/hrt hearts. Regardless of its

mechanism of action, catastrophic failure of the ETC, due to

iron deficiency, cannot be overcome, and the benefits of NR

are transient.

Our findings in mice provide mechanistic support for the

known benefit of iron treatment in heart failure accompanied

by iron deficiency. We showed that iron is not only necessary

for cardiac function, but also must be continuously available.

Furthermore, our findings suggest that NR, a potent, NAD-

enhancing form of vitamin B3, might provide added benefit in

patients with cardiac iron deficiency.
EXPERIMENTAL PROCEDURES

See the Supplemental Experimental Procedures.

Animals

All animal studies were carried out under protocols approved by the Duke Uni-

versity Animal Care and Use Committee. Animal housing, care, and husbandry

were overseen by the Duke Department of Laboratory Animal Resources,

which is accredited by the Association for Assessment and Accreditation of

Laboratory Animal Care (AAALAC).

We crossed 129/SvEv mice bearing a floxed Tfrc allele (Chen et al., 2015)

with transgenic C57BL/6 mice expressing Cre recombinase under the control

of the a-MyHC promoter (Agah et al., 1997). We backcrossed with 129/SvEv

mice for more than ten generations, and, after the initial phenotypic character-

ization, all studies used mice with a homogeneous 129/SvEv background. An-

imals were genotyped by PCR using genomic DNA from toe clips (Mizutani

et al., 2002). Primers for Tfrc alleles, Cre, and Hjv alleles are described in the

Supplemental Experimental Procedures.

For iron rescue experiments, mice were injected intraperitoneally (i.p.) with

5 mg Uniferon 100 (25 ml) at P3, or at both P3 and P7. For NR rescue experi-
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ments, mice were injected i.p. with NR in PBS as previously described (Yang

et al., 2007) at 750 mg/kg daily from P5. Volume was based on body weight,

with less than 100 ml at P10. Control animals were injected with PBS only.

Histology

Paraffin sections (4 mm) were stained with H&E for light microscopy. Cardio-

myocyte dimensions were measured by digital morphometry of paraffin-

embedded myocardial cross-sections stained with Alexa Fluor 594 WGA

(Life Technologies, Invitrogen) using ImageJ image processing. Apoptotic cells

were identified and quantified using the In Situ Cell Death Detection Kit (Roche)

on paraffin sections according to the manufacturer’s instructions. Quantitation

was done by ImageJ using three consecutive sections for each mouse.

Echocardiography

Echocardiography was performed without anesthesia on age-, sex-, and body

weight-matched mice by an investigator blinded to genotypes. Left ventricular

dimensions and fractional shortening were calculated based on echocardiog-

raphy data as described previously (Esposito et al., 2000).

Electron Microscopy

Hearts were removed, rinsed in cold Krebs-Henseleit buffer (Krebs andHense-

leit, 1932), and immersed in 5%glutaraldehyde buffer. Samples were prepared

for transmission electron microscopy and imaged by Duke Research Electron

Microscopy Services.

Tissue Iron Analysis

Heart non-heme iron wasmeasured as described previously (Levy et al., 1999;

Torrance and Bothwell, 1980).

Analysis of ETC Complexes I–V

Tissues were homogenized in 250 mM sucrose, 40 mM potassium chloride,

1 mM EGTA, 1 mg/ml fatty acid-free BSA, 20 mM Tris-HCl (pH 7.2), and

homogenates were centrifuged at 600 3 g for 10 min at 4�C. Steady-state
activities of enzyme complexes I–IV in the supernatant were determined

as previously described (Janssen et al., 2007; Spinazzi et al., 2011). For com-

plex V, crudemitochondria were collected and activity was determined as pre-

viously described (Kirby et al., 2007).

Preparation of Mitochondrial Lysates and Acetyl-Lysine Analysis

Mouse hearts were homogenized (40–50 strokes) in 15 vol of ice-cold homog-

enization buffer (320 mM sucrose, 50 mM KH2PO4 [pH 7.4], 10 mM Tris-HCl

[pH 7.4], and 1 mM EDTA) in the presence of protease inhibitors, phosphatase

inhibitors (Roche), and deacetylase inhibitors (2.5 mM Trichostatin A, 5 mM

nicotinamide, and 5 mM sodium butyrate) using glass homogenizers. Crude

mitochondria were isolated by differential centrifugation. Homogenates were

centrifuged at 1,600 rpm for 10 min at 4�C. The supernatant was centrifuged

again at 1,600 rpm for 10 min at 4�C. The supernatant subsequently was

centrifuged at 10,000 3 g for 10 min at 4�C. The pellet was collected, rinsed

with 1 ml homogenization buffer, and centrifuged at 10,000 3 g again for

10 min at 4�C. The pellet was resuspended in 100 ml 20 mM HEPES

(pH 7.4), 150 mM NaCl, and 1% Triton X-100 with protease, phosphatase,

and deacetylase inhibitors. Western blot analysis was performed with 70 mg

protein per lane. Antibodies recognizing acetyl-lysine were from Cell Signaling

Technology.

Statistical Analysis

One-way ANOVA was performed for comparisons between two means.

Two-way ANOVA followed by Bonferroni post hoc was performed for multiple

comparisons. Survival analysis was performed using log rank (see the Supple-

mental Experimental Procedures). Dr. Kingshuk Roy Choudhury (Duke Depart-

ment of Biostatistics and Bioinformatics) assisted with statistical analyses (p <

0.05 was considered statistically significant).
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Cantó, C., Houtkooper, R.H., Pirinen, E., Youn, D.Y., Oosterveer, M.H., Cen,

Y., Fernandez-Marcos, P.J., Yamamoto, H., Andreux, P.A., Cettour-Rose,

P., et al. (2012). The NAD(+) precursor nicotinamide riboside enhances

oxidative metabolism and protects against high-fat diet-induced obesity.

Cell Metab. 15, 838–847.

Cerutti, R., Pirinen, E., Lamperti, C., Marchet, S., Sauve, A.A., Li, W., Leoni, V.,

Schon, E.A., Dantzer, F., Auwerx, J., et al. (2014). NAD(+)-dependent acti-

vation of Sirt1 corrects the phenotype in a mouse model of mitochondrial

disease. Cell Metab. 19, 1042–1049.
C

Chang, N.C., Nguyen, M., Germain, M., and Shore, G.C. (2010). Antagonism

of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum

requires NAF-1. EMBO J. 29, 606–618.

Chen, A.C., Donovan, A., Ned-Sykes, R., and Andrews, N.C. (2015). Nonca-

nonical role of transferrin receptor 1 is essential for intestinal homeostasis.

Proc. Natl. Acad. Sci. USA 112, 11714–11719.

Chi, Y., and Sauve, A.A. (2013). Nicotinamide riboside, a trace nutrient in

foods, is a vitamin B3 with effects on energy metabolism and neuroprotection.

Curr. Opin. Clin. Nutr. Metab. Care 16, 657–661.

Erbel, P.J., Card, P.B., Karakuzu, O., Bruick, R.K., and Gardner, K.H. (2003).

Structural basis for PAS domain heterodimerization in the basic helix–loop–

helix-PAS transcription factor hypoxia-inducible factor. Proc. Natl. Acad.

Sci. USA 100, 15504–15509.

Ermak, G., Sojitra, S., Yin, F., Cadenas, E., Cuervo, A.M., and Davies, K.J.

(2012). Chronic expression of RCAN1-1L protein induces mitochondrial auto-

phagy and metabolic shift from oxidative phosphorylation to glycolysis in

neuronal cells. J. Biol. Chem. 287, 14088–14098.

Esposito, G., Santana, L.F., Dilly, K., Cruz, J.D., Mao, L., Lederer, W.J., and

Rockman, H.A. (2000). Cellular and functional defects in a mouse model of

heart failure. Am. J. Physiol. Heart Circ. Physiol. 279, H3101–H3112.

Fang, E.F., Scheibye-Knudsen, M., Brace, L.E., Kassahun, H., SenGupta, T.,

Nilsen, H., Mitchell, J.R., Croteau, D.L., and Bohr, V.A. (2014). Defective mi-

tophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction.

Cell 157, 882–896.

Finck, B.N., Gropler, M.C., Chen, Z., Leone, T.C., Croce, M.A., Harris, T.E.,

Lawrence, J.C., Jr., and Kelly, D.P. (2006). Lipin 1 is an inducible amplifier of

the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab. 4,

199–210.

Geng, J., Baba, M., Nair, U., and Klionsky, D.J. (2008). Quantitative analysis of

autophagy-related protein stoichiometry by fluorescence microscopy. J. Cell

Biol. 182, 129–140.

Gomes, A.P., Price, N.L., Ling, A.J., Moslehi, J.J., Montgomery, M.K., Rajman,

L., White, J.P., Teodoro, J.S., Wrann, C.D., Hubbard, B.P., et al. (2013).

Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mito-

chondrial communication during aging. Cell 155, 1624–1638.

Gulati, V., Harikrishnan, P., Palaniswamy, C., Aronow, W.S., Jain, D., and

Frishman, W.H. (2014). Cardiac involvement in hemochromatosis. Cardiol.

Rev. 22, 56–68.

Hentze, M.W., Muckenthaler, M.U., and Andrews, N.C. (2004). Balancing acts:

molecular control of mammalian iron metabolism. Cell 117, 285–297.

Hu, X., Qiu, J., Grafe, M.R., Rea, H.C., Rassin, D.K., and Perez-Polo, J.R.

(2003). Bcl-2 family members make different contributions to cell death in hyp-

oxia and/or hyperoxia in rat cerebral cortex. Int. J. Dev. Neurosci. 21, 371–377.

Huang, Y., Li, Z., and Yang, Z. (2003). Roles of ischemia and hypoxia and the

molecular pathogenesis of post-burn cardiac shock. Burns 29, 828–833.

Huang, F.W., Pinkus, J.L., Pinkus, G.S., Fleming, M.D., and Andrews, N.C.

(2005). A mouse model of juvenile hemochromatosis. J. Clin. Invest. 115,

2187–2191.

Ishii, K.A., Fumoto, T., Iwai, K., Takeshita, S., Ito, M., Shimohata, N., Aburatani,

H., Taketani, S., Lelliott, C.J., Vidal-Puig, A., and Ikeda, K. (2009). Coordination

of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast acti-

vation. Nat. Med. 15, 259–266.

Janssen, A.J., Trijbels, F.J., Sengers, R.C., Smeitink, J.A., van den Heuvel,

L.P., Wintjes, L.T., Stoltenborg-Hogenkamp, B.J., and Rodenburg, R.J.

(2007). Spectrophotometric assay for complex I of the respiratory chain in tis-

sue samples and cultured fibroblasts. Clin. Chem. 53, 729–734.

Torrance, J.D., and Bothwell, T.H. (1980). Tissue iron stores. In Methods in

Hematology, J.D. Cook, ed. (New York: Churchill Livingstone Press),

pp. 104–109.

Jimenez, R.E., Kubli, D.A., and Gustafsson, A.B. (2014). Autophagy and

mitophagy in themyocardium: therapeutic potential and concerns. Br. J. Phar-

macol. 171, 1907–1916.
ell Reports 13, 533–545, October 20, 2015 ª2015 The Authors 543

http://dx.doi.org/10.1016/j.celrep.2015.09.023
http://dx.doi.org/10.1016/j.celrep.2015.09.023
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref1
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref1
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref1
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref1
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref2
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref2
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref2
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref2
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref3
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref3
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref3
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref4
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref4
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref4
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref5
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref5
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref6
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref6
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref6
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref6
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref6
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref7
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref7
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref7
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref7
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref8
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref8
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref8
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref9
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref9
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref9
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref10
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref10
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref10
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref11
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref11
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref11
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref11
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref12
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref12
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref12
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref12
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref13
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref13
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref13
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref14
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref14
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref14
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref14
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref15
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref15
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref15
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref15
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref16
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref16
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref16
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref17
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref17
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref17
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref17
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref18
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref18
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref18
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref19
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref19
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref20
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref20
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref20
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref21
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref21
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref22
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref22
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref22
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref23
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref23
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref23
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref23
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref24
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref24
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref24
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref24
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref25
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref25
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref25
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref26
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref26
http://refhub.elsevier.com/S2211-1247(15)01034-7/sref26


Kachhap, S.K., Faith, D., Qian, D.Z., Shabbeer, S., Galloway, N.L., Pili, R., Den-

meade, S.R., DeMarzo, A.M., and Carducci, M.A. (2007). The N-Myc down

regulated Gene1 (NDRG1) Is a Rab4a effector involved in vesicular recycling

of E-cadherin. PLoS ONE 2, e844.

Kaelin, W.G., Jr., and Ratcliffe, P.J. (2008). Oxygen sensing by metazoans: the

central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402.

Karamanlidis, G., Lee, C.F., Garcia-Menendez, L., Kolwicz, S.C., Jr., Sutham-

marak, W., Gong, G., Sedensky, M.M., Morgan, P.G., Wang, W., and Tian, R.

(2013). Mitochondrial complex I deficiency increases protein acetylation and

accelerates heart failure. Cell Metab. 18, 239–250.

Khan, N.A., Auranen, M., Paetau, I., Pirinen, E., Euro, L., Forsström, S., Pasila,

L., Velagapudi, V., Carroll, C.J., Auwerx, J., and Suomalainen, A. (2014). Effec-

tive treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin

B3. EMBO Mol. Med. 6, 721–731.

Kirby, D.M., Thorburn, D.R., Turnbull, D.M., and Taylor, R.W. (2007). Biochem-

ical assays of respiratory chain complex activity. Methods Cell Biol. 80,

93–119.

Krebs, H.A., and Henseleit, K. (1932). Untersuchungen €uber die Harnstoffbil-

dung im Tierkörper. Hoppe Seylers Z. Physiol. Chem. 210, 33–66.

Le, N.T., and Richardson, D.R. (2004). Iron chelators with high antiproliferative

activity up-regulate the expression of a growth inhibitory and metastasis

suppressor gene: a link between iron metabolism and proliferation. Blood

104, 2967–2975.

Lehman, J.J., Barger, P.M., Kovacs, A., Saffitz, J.E., Medeiros, D.M., and

Kelly, D.P. (2000). Peroxisome proliferator-activated receptor gamma coac-

tivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 106,

847–856.

Levy, J.E., Jin, O., Fujiwara, Y., Kuo, F., and Andrews, N.C. (1999). Transferrin

receptor is necessary for development of erythrocytes and the nervous sys-

tem. Nat. Genet. 21, 396–399.

Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., Ma, Q., Zhu, C.,

Wang, R., Qi, W., et al. (2012). Mitochondrial outer-membrane protein

FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat.

Cell Biol. 14, 177–185.

Medeiros, D.M., and Beard, J.L. (1998). Dietary iron deficiency results in car-

diac eccentric hypertrophy in rats. Proc. Soc. Exp. Biol. Med. 218, 370–375.

Mizutani, A., Furukawa, T., Adachi, Y., Ikehara, S., and Taketani, S. (2002). A

zinc-finger protein, PLAGL2, induces the expression of a proapoptotic protein

Nip3, leading to cellular apoptosis. J. Biol. Chem. 277, 15851–15858.

Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Le-

har, J., Puigserver, P., Carlsson, E., Ridderstråle, M., Laurila, E., et al. (2003).
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V., Löhr, F., Popovic, D., Occhipinti, A., et al. (2010). Nix is a selective auto-

phagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51.

Nunnari, J., and Suomalainen, A. (2012). Mitochondria: in sickness and in

health. Cell 148, 1145–1159.

O’Donnell, K.A., Yu, D., Zeller, K.I., Kim, J.W., Racke, F., Thomas-Tikhonenko,

A., and Dang, C.V. (2006). Activation of transferrin receptor 1 by c-Myc en-

hances cellular proliferation and tumorigenesis. Mol. Cell. Biol. 26, 2373–2386.

Okada, Y., Tateishi, K., and Zhang, Y. (2010). Histone demethylase JHDM2A is

involved in male infertility and obesity. J. Androl. 31, 75–78.

Petering, D.H., Stemmer, K.L., Lyman, S., Krezoski, S., and Petering, H.G.

(1990). Iron deficiency in growing male rats: a cause of development of cardio-

myopathy. Ann. Nutr. Metab. 34, 232–243.
544 Cell Reports 13, 533–545, October 20, 2015 ª2015 The Authors
Puccio, H., Simon, D., Cossée, M., Criqui-Filipe, P., Tiziano, F., Melki, J., Hin-

delang, C., Matyas, R., Rustin, P., and Koenig, M. (2001). Mouse models for

Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S

enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet.

27, 181–186.

Puri, C., Renna, M., Bento, C.F., Moreau, K., and Rubinsztein, D.C. (2014).

ATG16L1 meets ATG9 in recycling endosomes: additional roles for the plasma

membrane and endocytosis in autophagosome biogenesis. Autophagy 10,

182–184.

Regula, K.M., Ens, K., and Kirshenbaum, L.A. (2002). Inducible expression of

BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of

ventricular myocytes. Circ. Res. 91, 226–231.

Rensvold, J.W., Ong, S.E., Jeevananthan, A., Carr, S.A., Mootha, V.K., and Pa-

gliarini, D.J. (2013). Complementary RNA and protein profiling identifies iron as

a key regulator of mitochondrial biogenesis. Cell Rep. 3, 237–245.

Roberts, D.J., Tan-Sah, V.P., Ding, E.Y., Smith, J.M., andMiyamoto, S. (2014).

Hexokinase-II positively regulates glucose starvation-induced autophagy

through TORC1 inhibition. Mol. Cell 53, 521–533.

Sahni, S., Bae, D.H., Lane, D.J., Kovacevic, Z., Kalinowski, D.S., Jansson, P.J.,

andRichardson, D.R. (2014). Themetastasis suppressor, N-myc downstream-

regulated gene 1 (NDRG1), inhibits stress-induced autophagy in cancer cells.

J. Biol. Chem. 289, 9692–9709.

Spinazzi, M., Casarin, A., Pertegato, V., Ermani, M., Salviati, L., and Angelini,

C. (2011). Optimization of respiratory chain enzymatic assays in muscle for

the diagnosis of mitochondrial disorders. Mitochondrion 11, 893–904.

Stehling, O., Mascarenhas, J., Vashisht, A.A., Sheftel, A.D., Niggemeyer, B.,
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